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The analysis of  the shock adiabats of  ionic crystals (alkali-halide compounds, oxides) is a necessary link in the 
passage to the examination of  the behavior of many inorganic materials (minerals, mountain rocks) under shock compression 
[1-3]. The shock compression parameters of  the majority of alkali-halide crystals have been determined well both experi- 
mentally [4] and theoretically [5, 6]. The behavior of  oxides under shock loading conditions has been investigated much 
less. On the basis of  a proposed semiempirical binding energy function which takes account of  pairwise and triple ion 
interactions, the shock adiabats are analyzed in this paper for oxides of  the alkaline-earth metals MgO, CaO, SrO, BaO in 
the phases B 1 (NaC1 lattice) and B2 (CsCI lattice). 

The shock adiabat PH(V) is computed by means of the formula [7] 

P ~  (V) = Px (v) + v (v) [E o - -  u (V)l /V 
t + ~ ? ( v ) [ V - - V o ] / 2 v  ' (1) 

where U(V), P• are the energy and pressure on the zero isotherm, 7(V) is the Gruneisen factor, and Vo, E o are the 

volume and internal energy of  the free crystal. Utilization of a quantum-mechanical method of  computing U(V) [5], on 
the basis of a pairwise approximation of the binding forces is less justified in oxides tba in alkali-halide crystals since 
substantial deviations from the Cauchy relationships between the second-order elastic moduli are observed there. These 
deviations are due primarily to three-particle interactions. 

Taking account of  the three-particle interactions, the crystal binding energy function formed by particles of different 
species has the form 

t (rU,h~,) t 
u' zz'z" (2) 
hh" h h ' h  :t 

where r t~ 'kk' is the spacing between particles of  the species k and k' that are in the elementary cells, l and !', <p, ff are, 
respectively, the potentials of  the pairwise and three-particle interactions. We approximate the pairwise interaction by the 
Born-Maier potential 

, , ,  
q0 (r) = --7-- -~ Ahh' exp --  _ %v dk~' 

r 6 r s 

where ek, e~ are the ion charges, Ckk, , d~, are, respectively, the dipole-dipole  and dipote-quadrupole interaction constants 

whose values for the oxides are presented in [8], and Akk, ,0 are parameters. A potential whose functional form is proposed 
in [91 

( ,.~z'hh' + Szh"k +/'z"~'k" ) 
~P = Bhh'h" exp --  3p 

is used to approximate the triple interactions, where B kk'k" are parameters, and p has the same numerical value as in the 

pairwise potential. Triplets of  ions formed by two ions of the same sign and one ion of the opposite sign Were taken into 
account in the last term in (2) in the summation over the crystal lattice. The configuration of  such triplets for the NaC1 
lattice (under normal conditions oxides of  the alkaline-earth metals have this kind of structure) is an isosceles right triangle, 
whose two sides equal the shortest distance R between the ions, and the third side is v/~R. Experimental characteristics 
of the free oxides, the binding energy, the equilibrium volume [8], and the second-order elastic modulus [10-13] were 
used to determine the four unknown parameters of the binding energy function. 

The equations of  state of hydrostatic compression of  oxides of  the alkaline-earth metals in the B 1 and B2 phases, 
computed on the basis of  the binding energy function obtained, are in good agreement with existing experimental data 
[ 14-16]. The Gruneisen coefficients 7(V) were calculated by the Sla ter -Landau (SL), Dugdale-Macdonald (DM), Zubarev-  
Vashchenko (ZV) formulas to compute the shock adiabats. Good agreement between the computed values 7(Vo) and ex- 
periment for MgO is obtained in a computation using SL, and for CaO, SrO using ZV. We know of no experimental values 
of  3'(V o) for BaO. The computed values of  7(V o) are presented in Table 1. Computation of the shock adiabats for the 

phase B2 was by means of (1) with parameters of  the initial state of  the lattice B 1 with U(V), Px(V), 3'(V) referred to the 

phase B2. In the case of  MgO the shock compression pressure PH (V) as computed by using the 3'(V) according to S la ter -  

Landau, and according to Zubarev-Vashchenko for CaO, SrO, BaO. Computed pressures on the zero isotherm Px(V) and 
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TABLE 1 TABLE 3 

Crystal 

MgO 

CaO 

SrO 

BaO 

SL 

1,58 
t,78 
1,79 
1,87 

V (Vo) 
[ DM 

t,25 
t ,45 
t,46 
t,54 

Experi- 
ZV merit 

0,92 t,54 
t,t2 1,19 
1,t3 1,1i 
t,2t 

TABLE 2 

Crystal 

MgO 
CaO 
SrO 
BaO 

Phase B1 
"krnf 

]a,~e e b 

7,25 t,17j 
6,30 t,26 
3,97 1,27 
2,68 t,27 

Phase B2 
'km/ 

a~e r b 

5,10 1,7t 
4,63 t,63 
2,61 t,59 
2,62 1,54 

Crystal �9 

MgO 

V,,/V 

1,17 
t ,20 
1,28 
1,32 
1,51 
1,75 
t,88 

Phase B1 

Px' kbar P~, kbar 

372 376 
473 481 
708 733 
845 884 

t554 t730 
2603 3209 
3299 4378 

Vo/V 

1,61 
1,72 
t,78 
1,84 
t,91 
1,97 
2,04 

Phase B2 

Vx' kbar 

16t9 
21t7 
2404 
2720 
3068 
3450 
3870 

P//, kbar 

1686 
2431 
2904 
3464 
4133 
4942 
5932 

CaO 

SrO 

t,t7 
t ,20 
1,28 
t ,32 
1,42 
1,57 
t ,88 

1,17 
1,20 
t ,28 
1,37 
t ,46 
t,68 
1,88 

3t0 
397 
604 
726 

t015 
t586 
3044 

233 
298 
455 
651 
895 

t575 
2309 

313 
403 
622 
755 

t081 
t770 
3866 

236 
304 
469 
685 
968 

t840 
2943 

1,5t 
t ,56 
1,6t 
1,72 
t ,84 
t,97 
2,04 

t,46 
t,51 
t,6t 
t,72 
1,84 
t ,97 
2,04 

866 
t025 
t203 
1620 
2t36 
277t 
314t 

540 
648 
903 

1222 
t6t5 
2102 
2386 

918 
tt22 
t359 
1956 
2773 
39t6 
4660 

559 
695 

1033 
t490 
2120 
3005 
3582 

BaO 

1,17 
1,20 
t ,28 
t ,37 
t,46 
t,68 
1,88 

198 
254 
390 
562 
779 

139t 
206i 

20t 
259 
404 
596 
85t 

1661 
2726 

t ,38 
1,46 
1,56 
t ,67 
1,78 
t ,90 
2,04 

260 
408 
594 
829 

t12t 
t485 
t936 

267 
449 
696 

t033 
1502 
2165 
3135 

the shock compression pressure PH(V) of the oxides as functions of the relative compression V0/V are presented in Table 

2. The shock adiabats of MgO, CaO, BaO are represented in Figs. 1-3 (experimental data: 1 from [ 17], 2 from [1], 3 
from [ 15]). In the case of MgO and CaO the experimental points from [ 1, 17] are in good agreement with the computed 
curve of PH(V) for the B1 phase; the passage to the compact B2 phase was not  established experimentally. In the case of 

BaO the phase transition holds in the low pressure area [3, 15]. The computed shock adiabats of the B1 and B2 lattices 
for BaO are close to the experimental points referring to static compression [ 15] in the above-mentioned domain. There 
are no experimental data on the shock compression of SrO in the literature. Good agreement between experiment Px(V) 

and "r(Vo), as well as the utilization of the experimental characteristics of the free state in determining the binding energy 

function parameters, allow the hope that the computed shock adiabats for SrO would, as for MgO and CaO, describe the 
actual behavior of this crystal under shock compression conditions sufficiently correctly. 

The shock adiabats obtained for the crystal under consideration allowed the computation of a relationship between 
the shock velocity D and the mass velocity u. The following relations from the conservation laws were used in the 
computations 

D(v) = Vo~P~/(Vo--v) ,  u(v)= VP~(v0-- v), 
where PH and v (the specific volume) are taken from our computations. The relation between D and u is interpolated in a 
broad range of velocities by a function of the form 

D = a - ~  bu. (3) 

The parameters a and b found from the computed velocities D and u by least squares are presented in Table 3 for the B1 
and B2 phases of the oxides. The location of experimental points relative to the computed line (3) is shown in Fig. 4 for 
the crystals MgO and CaO (1 from [ 17], 2 from [1]). The experimental points stack up well on the computed lines (3) 
corresponding to the B 1 phase of the oxides MgO and CaO. 
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The results obtained can be used in interpreting experimental results on the shock compression of oxides, as well as 
to construct the additive equations of state for minerals and mountain rocks. 
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STRESSED STATE OF A CEMENTED POROUS MEDIUM 

WITH AN UNDERGROUND EXPLOSION 

A. N. Bovt, V. I. Kobets, A. M. Maslennikov, E. V. Sumin, 
V. K. Sirotkin, V. S. Fetisov, and E. A. Shurygin UDC 534.222 

The investigation of the behavior of  a cemented porous medium with an underground explosion is of  considerable 
interest. This is connected with the fact that  many rocks (e.g., gas-and-oil-saturated collectors) are cemented porous media, 
saturated by a gas or a liquid. At  the same time, many important  questions connected with the action of explosive loads 
on such media have been insufficiently studied. In [ 1, 2] a model was formulated, and experimental investigations were 
made of  an underground explosion in soft soils. Explosion in a brittle medium was studied in [3, 4]. However, it  is well 
known that  cemented porous media differ in a number of special characteristics [5]: an increased compressibility in 
comparison with excavated rock, a considerable porosi ty (in distinction from soft soils), etc. For  practical applications, an 
important  question is that  of  the residual stresses, arising at the moment  of  the breakdown of the underground cavity, 
which will determine the rheological behavior of  the medium in the vicinity of  the explosion. The present article describes 
a method and the results of  experimental  investigations of an underground explosion in porous cement blocks. 

1. Experimental  explosions were carried out  in cement  blocks with a diameter of  790 mm and a height of 890 mm. 
The blocks were put  into metallic casings with a walt thickness of 10 ram. The power of  the explosion was selected from 
the condit ion that  the time of  the formation of  the cavity must be less than twice the time of  the passage of  the wave of  
the compression up to the limits of  the block. The experiments were made using charges of  TG-20/80 with a weight of  
12 g, having a cylindrical form with a height equal to their diameter. The blocks were prepared by filling metallic casings 
with a cement solution with VTs-0.5. Before the solution was poured, a tube was installed in the center of the vessel; 
when the tube was removed from the hardening solution, a hole was formed, into which the charge was lowered. The 
charge was installed at the center of  the block and sand was poured in to a height of  40 cm. The remaining part  of the 
charging hole was sealed by a compound based on an epoxide resin. To determine the physicomechanical properties of  the 
medium at the moment  of  the explosion, samples were taken. The mean values of  the properties of  the medium are given 
in Table 1. To make dynamic measurements, before the solution was poured, wire-type strain-gauge pickups were installed 
radially and azimuthally with respect to the front of  the wave. The overall dimensions of  the pickups were: diameter 4 
mm, length 10 ram. Micromodular stabilitrons were used as converters. The principle of  the action of a pickup consisted 
in the following. The pressure is t ransmitted to the silicon crystal of  a diode, whose sensing layer is a p - n  transition. A 
direct current is passed through the diode from a current generator. An increase or decrease in the thickness of  the p - n  
transition with the action of  a load on the crystal brings about a change in the voltage drop at the p -n - t r ans i t ion ,  which 
is recorded using an amplification device. After  an analysis of  the oscillograms of  the stresses in the compression wave, 
the following dependence of the maximal radial Orm and azimuthal o ~ m stresses on the distance were obtained 

ar,n = 7t .4 (W1/3/r) ~'~, %,;  = 59,7 (Wt/3/r) ~'7~, 
where W is in kg, r is in m, a is in kg/cm 2 . 

Figure 1 shows a typical oscillogram of the stresses at different points from the center of  the charge, where the 
crosses denote the residual stresses; 0 denotes zero explosion; 2~, 5r a re  the number of  the pickup and the recorded azi- 
muthal components  of  the stresses, respectively; r is the distance from the pickup to the charge. On some oscillograms 
there are residual stresses differing in sign. I t  is well known that, with the hardening of a cement solution there arises a 
compressive stress, which, in the experiments,  was around 200 kg/cm 2 , and with respect to which the parameters of the 
wave were recorded. The appearance of negative stresses beyond the zone of  the breakdown is explained by discharging 
of  the  pickups from the phonon pressure due to the appearance of  elongational stresses in the medium. 

Figures 2 and 3 show the distribution of the residual radial o and azimuthal a stresses, where 1 is the measured, 
r ~0 

and 2 the reduced stress. Since the explosions took place in blocks whose yield points differed somewhat in value, on the 
axis of  ordinates there are plot ted the ratios of  the actually recorded residual stresses to the crushing strength of the 

Moscow. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 137-142, May-June, 
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TABLE 1 

Density p, g/era s t,9 

Velocity of longitudinal 
elastir waves, am/cm 

Velocity of transverse 
elastic waves, km/em 

3 , 2  " 

1,6 

Compressive strength 
a~, kgr "cruz 220 

Young modulus E-IO ~ 4_,5t 

Poisson coefficient V 
0,29 

Porosity rno, % 20 

o 

r = / 7 e m ~  eSr 
150- 

1oo - 

50 

o 

50 

, tO0 

I0' ~-~ ' ~ I ~ [.50 
msec 

29~ 

2 r  7cm 

18r 1 4 o m  

s~ . . . . .  

s r  1o f_'.~r 

I t L I  

0,4- 

9,2- 

t 2 .  

2 
I 
I 

Fig. 1 Fig. 2 

i 
, I 

-! 

i 

7", CITI 

20  

I ,I i 

samples for each experiment.  I t  can be seen that the experimentally determined field of the residual stresses depends non- 
monotonical ly on the distance and is characterized by the presence of a maximum. The radius of the cavity, raeasured in 
the experiments,  was 2.1 times as great as the radius of  the charge. 

2. To bring out the principal special characteristics of the field of  the residual stresses, it must be considered 
theoretically. First, it is expedient to examine a model problem in a simplified statement, allowing of  an analytical solution. 

We consider the problem of  the adiabatic expansion of  an underground explosion in a porous medium. We postu- 
late that, when the shear stress ~- = a - o| attains the yield point  Y, there is complete closing of the pores. We assume 

that the condit ion for creep of the medium has the form !rl = Y. Behind the form of the closing of  the pores, which 
coincides with the front of  the plastic wave, the medium flows like an incompressible medium. Such a statement of the 
problem is analogous to that  developed in [6, 71. 

At  early moments  of  time, the front of  the closing of the pores coincides with the front of the shock wave. Subse- 
quently, with a decrease in the intensity and the velocity of  the shock wave, an elastic precursor breaks away ahead. We 
shall be interested in the stressed state in the neighborhood of  the cavity at the moment  of its collapse. In this case, it is 
possible to neglect the role of wave processes connected with the elastic compressibility of  the material, both ahead of and 
behind the front of  the closing of the pores. 

Using the condit ion of  incompressibility, the equation of  continuity,  and the equation of motion,  we find the field 
of  the velocities and the field of  the stresses ahead of the front of  the closing of the pores (i.e., in the elastic zone) 

u = E+(t)/r% r > _R; 

0 + (  ~%1 2 R 3 
trr =: - -  Ph @ T \ s  - -  2r3 / - - - ' g  - Y - ' r  a' 

% - -  c% = Y R 3 / F ,  

(2.1) 

(2.2) 

(2.3) 

where the condit ion at infinity is used o r = a --Ph (Ph is the lithostatic pressure) and at the plastic front r = R a  a r 

Y; Y is the yield point. 

In the region behind the front of  the closing of the pores, the field of  the velocities and the field of the stresses 
will be determined by the relationships 

u = X _ ( t ) / F ,  R > r > a; (2.4) 
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20 r ,  em 

a r = - - p ( a ) - } -  2Y !n--~- + p+s ( + - -  + )  p+~'~ 

% - -  ~  = Y ,  (2.6) 

where the condit ion at the boundary of  the cavity is used o r ( a )  = -p (a ) ,  (p(a) is the pressure of the gases inside cavity of 
radius a). 

To close the system of  equations, we write the condit ion of  joining for the velocities and stresses at the front of 
the closing of  the pores 

~_ = (t - -  m)~+ + m R " t } ;  (2.7) 

~ , ( R _ )  - or (R+~ 0+ (_~-- mR' m) (L+ - -  L_)h (2.8) 

We shall consider porous media such that the porosity satisfies the condition m >> Y/E ~ l0 -3, where E is the 
Young modulus. In this case, at the asymptotic  limit (a /ao)a  >> l (a  o is the initial radius of  the charge) we obtain the 

following between the radius of  the front of  the closing of  the pores R and the radius of the cavity: 

R = a m  - I /a .  (2.9) 

At  this l imit we obtain the evaluation X_ << k+. Then, for the radial stress in the region behind the front of  the 

closing of  the pores, using (2.2), (2.5), (2.8), (2.9), we obtain the relationship 

- -  (~r = - -  P ( a )  - -  2Y In - E -  - -  ~ t 2-Y 3 

It  can be noted that, when the expression in square brackets is positive, the expression behaves in a nonmonotonic  manner. 
It attains a maximum at the point  

a [Ph - -  IO (a) t In m] 
r , . =  l - - -Tg-~L ~ 3 " 

In what follows we assume that  [Ph - -  p(a) l << 2Y at the moment  of collapse of  the cavity. In this case, we obtain a 
simple expression for the radius of the maximal stress 

t a l n ! .  (2.10) 
r m  ~ -  3 i - -  i n  1 /3  m 

With reasonable values of  the porosity,  the radius of the zone of  maximal stresses will be less than the radius of the zone 
of plastic flow. 

Thus, the residual stresses will behave in a nonmonotonic  manner. As an analysis shows, this monotonici ty  is 
connected in the present case with the competi t ion between the static and dynamic terms in exp-ession (2.5). The static 
term prevents the expansion of  the cavity, and therefore falls with the distance. The dynamic term is connected with the 
acceleration of the medium, directed toward the cavity, which leads to a deceleration of the medium and to its stopping. 
It must be noted that the evaluations for the radius of  the zone of  plastic flow (2.9) and the zones of  increased stress (2.10) 
are lower evaluations, since, with their derivation, it was assumed that,  at the front,  there is irreversible closing of all the pores. 

3. Taking account of the role of  wave processes connected with the elastic compressibility of the substance, the 
study of  the gas-saturated pores, closed in the loading wave, requires the solution of a complete system of equations of 
hydrodynamics in partial derivatives, which is possible only by numerical methods. The numerical calculations were made 

402 



using a model  of an elasticoplastic porous gas-saturated medium. It  is assumed that the motion of the medium is spherically 
symmetrical. The principal equations describing the spherically symmetrical motion of  the medium in Lagrangian coordinates 
for this model have the form 

ov {o~ u )  Ou [~% , ~ ) 
~  ~ = v ~ - ~ r  n -2  T ' (3.1) 

Oe Ov 2 [04 u'~ 

where v and e are the specific volume and the specific energy of  the medium as a whole; u is the velocity; �9 := a~ - -  %; aT 

and o 9 are the radial and tangential components  of  the stress tensor; p = - ( 1 / 3 )  (o r + 20 ) ;  r is an Euler coordinate. The 

tensor of  the stresses, oij, denoting the total  stress applied to the porous medium can be connected with the stress eli(l), 

acting in the solid component ,  and the pressure Pl of the gas, filling the pores [8]: 

(i) _ m p~ i j  (3.2) 

(m is the porosity).  

We further postulate that o!. ~) = - 3p~ i.e., the equality of the pressures in the skeleton and of  the gas in the pores. 

A similar postulation is valid, generally speaking, with sufficiently high pressures (~10  kbar); however, to simplify the cal- 
culations, we shall assume that the pressures in the components making up the porous material are identical. 

The system of  equations (3.1) is closed by the elasticoplastic equations of  state. In the elastic zone, the substance 
is deformed in accordance with Hooke's  law 

d~/dt ----- 2 G ( d u / d r -  u/r). (3.3) 

(G is the shear modulus). In the plastic region, the condition for  creep has the form 

I~] = ~*. (3.4) 

To take account of  the gas saturation of  the porous medium, a method analogous to [9] is used. In this case, the total 
specific volume v and the total specific energy were calculated using the formulas 

v = Riv i -~- R~v~, e = Rie i --~//2ez 

( l  denotes the solid component ,  2 the gas). Here Ri is the weight content  of a component ,  connected with the porosity;  
v t and e~ are the specific volume and the specific energy of the corresponding component.  The equation of state of the 
solid component  had a Mie-Grune i sen  form [ 10]. For  the gas, the equation of  state of an ideal gas with 3" = 1.4 was used. 

At  the initial moment  of  time, the pressure and the density of the explosion products were given in a region whose 
size coincides with the radius of  the charge. The radius of the charge was calculated from experimental data, in accordance 
with its weight. The system of  equations (3.1)-(3.4) was solved numerically in a computer  using the mechanical parameters 
of the medium in which the experiment was made. 

Numerical solution of  the system of  equations (3.1) gives the following picture of  the formation of the zone of 
contraction around the cavity. In the stage of  the expansion of  the original gas cavity, the medium around it is brought 
into motion. After  the cavity has attained a maximal radius, a rotational motion starts. This starts as a result of the fact 
that, in some intermediate region between the boundary of  the cavity and the shock wave, the mass velocity of  the medium 
becomes equal to zero, and then negative, i.e., as a result of unloading, the medium starts to move toward the center. As a 
result of  this kind of  contrary motion, there is a certain densification of  the medium in the vicinity of the cavity. When the 
back motion reaches the boundary of  the cavity, the medium around it starts to flow first elastically, and then plastically 
toward the center. The presence of  a zone of plastic flow at the boundary of the cavity leads to a further rise in the 
stresses in the medium surrounding the cavity. As a result, in the neighborhood of  the cavity there arises a characteristic 
zone of  a nonmonotonic  distribution of  o and o o. The value of  the maximum in Fig. 4 depends on the porosity of  the 

medium and decreases with an increase in the latter. Qualitatively, the form of  the dependence of cr and o 9 on the distance 

coincides with analytical evaluations and with the experimental data in Figs. 2 and 3. It must be noted that the residual 
stresses in the calculations of [1] had an analogous nonmonotonic  character. However, in this work, the character of the 
residual stresses and their formation were not discussed, since the main stress in the work was laid on the dynamic develop- 
ment  of  an explosion in a saturated porous medium. 
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KINETIC MODEL OF SPALLING FRACTURE 

B. G. Kholodar/ UDC 539.4.019+620.187.7 

The theory of  longevity based on thermofluctuational  representations [ 1 ] has received considerable development at 
this time. I t  is shown that  the thermofluctuational  mechanism of  fracture is conserved in a longevity time band from 
several years to fractions of  a microsecond. 

The S. N. Zhurkov formula 

tp = t o exp ~ - - - - - F F ~  (1) 

is a classical dependence of  the longevity tp on the load, where t o ~ 10 -la sec, k is the, Boltzmann constant, ~ is the 

absolute temperature,  o is the tensile stress, U o is the activation energy of the fracture process, and a is a structural param- 
eter of  the material. 

However, the possibilities of  practical application of  (1) are limited because the parameters U o and a turn out  to 

be dependent  on the loading conditions (the kind of stress state, the loading mode, etc.). These limitations can be reduced 
to a significant degree if, as is customary in mechanics [2, 3], differential equations for the development of  vulnerability, 
particularly those that would yield a dependence close to the S. N. Zhurkov formula for the longevity as solutions for the 
case of  one-dimensional tension on a rod; were used to perform the computations.  

Equations of a similar kind were proposed in [4, 5] for the one-dimensional and volume states of  stress. Comparing 
the computat ion results with experimental data shows that the equations yield the regularities of  the development of 
material vulnerability sufficiently completely in different loading modes. 

In the interests of  simplification, the one-dimensional case is examined in this paper, and the equation 

dodd~ = (i  - -  o ~ ) S h { ~ ( X / ( l  - -  co))} (2) 

is used to perform the computat ions,  where co is the material vulnerability (0 ~< co ~< 1); r is the dimensionless time intro- 
duced in place of  the time t by using the formula �9 = vt; v =  voe-Y;Y = Uo/kO ; v o is a material constant;  X = ~o/kt5 

is a dimensionless load parameter;  and U0, tz, k, @, o retain the same meanings as in (1). 

The factor (1 - ~ ) -1  in the argument of the function ~0 takes account of the rise in the mean stresses in the 
damaged section. 

In conformity with the general representations [ 1], we assume the activation energy U of  the fracture processes to 

vary nonlinearly as a function of  the applied stress o. The general view of  the dependence U(o) and its approximation by 
piecewise-linear functions are shown in Fig. 1. 

In performing the computat ions below, we used the dependence ~0 (X/(1 - co)) that describes the reduction of  the 
activation energy of  the fracture processes U = U o - ~0(6) from its initial value U o in the form of a,piecewise-linear functicn 

"wi thout  strengthening," which recalls the strain diagram of an ideally plastic material in its form: ' 

Chelyabinsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 142-148, May-June, 
1980. Original article submit ted May 21, 1979. 
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